We provide tutoring on GRE Math Subject Test and other specific exams or topics (including business mathematics) where assistance is needed as the student prepares for graduate school.

Example:

Which of the following statements is FALSE?
A. For a continuous function f on (a,b). Let y(a,b) be a constant. If, for t(a,b)g(t)=ytf(x) dx, then limh0g(t+h)g(t)h=f(t)
B. For a continuous function f on [a,b], there exists x[a,b] such that f(x)f(t) for all t[a,b]
C. The function f(x)=1x is continuous on (0,) but not uniformly continuous on (0,).
D. 02(xx)ex dx=e21
E. Let f be continuous on (a,b) and suppose that x,y(a,b) with xy. Then, there exists t(a,b) such that f(t)=f(x)f(y)xy.

Solution: E is False: Try f(x)=1x on (0,1), and use x=12,y=14. There is no   t(0,1) for which f(t)=f(x)f(y)xy
because f(x)f(y)xy is negative (=8).