Multivariable calculus is the type of calculus we use to make inquiry into functions or applications involving two or more variables. For example, in statistics, it is possible to formulate the concept of a probability density function f of jointly continuous random variables X and Y, in such a way that the volume under the surface z=f(x,y) over a region R in the xy plane is the probability that a point (x,y) lies in R. It is important, though, in this probability application of multivariable calculus for the (density) function f(x,y) to be non-negative.

Example:

Find the volume inside the ellipsoidx2a2+y2b2+z2c2=1

Solution: This is equal to twice the volume inside the upper half (z0) of the ellipsoid. Let V denote the volume inside the upper half of the ellipsoid. This volume is the same as the volume enclosed by the surface z=c1x2a2y2b2 above the region R in the xy plane given byR={(x,y):x2a2+y2b21}={(x,y):axa,b1x2a2yb1x2a2}So, with t:=b1x2a2, we have that V=aattz dy dx. Using trigonometric substitution, with α:=b1x2a2, set y=α sin θ. Then, dy=α cos θ and z=c1x2a2y2b2=c1x2a2 cos θ, so that z dy=bc(1x2a2)cos2θ, where ttz dy=π/2π/2bc(1x2a2)cos2θ dθ=bc(1x2a2)π/2π/2cos2θ dθ=bcπ2(1x2a2) Then, V=aabcπ2(1x2a2) dx=bcπ0a(1x2a2) dx=bcπ2a3

So, the required volume is \qquad2V=\frac{4\pi}{3}abc